Bacteriophage P1 Ban protein is a hexameric DNA helicase that interacts with and substitutes for Escherichia coli DnaB.

نویسندگان

  • Marc Lemonnier
  • Günter Ziegelin
  • Tobias Reick
  • Ana Muñoz Gómez
  • Ramón Díaz-Orejas
  • Erich Lanka
چکیده

Since the ban gene of bacteriophage P1 suppresses a number of conditionally lethal dnaB mutations in Escherichia coli, it was assumed that Ban protein is a DNA helicase (DnaB analogue) that can substitute for DnaB in the host replication machinery. We isolated and sequenced the ban gene, purified the product, and analysed the function of Ban protein in vitro and in vivo. Ban hydrolyses ATP, unwinds DNA and forms hexamers in the presence of ATP and magnesium ions. Since all existing conditionally lethal dnaB strains bear DnaB proteins that may interfere with the protein under study, we constructed a dnaB null strain by using a genetic set-up designed to provoke the conditional loss of the entire dnaB gene from E.coli cells. This novel tool was used to show that Ban restores the viability of cells that completely lack DnaB at 30 degrees C, but not at 42 degrees C. Surprisingly, growth was restored by the dnaB252 mutation at a temperature that is restrictive for ban and dnaB252 taken separately. This indicates that Ban and DnaB are able to interact in vivo. Complementary to these results, we demonstrate the formation of DnaB-Ban hetero-oligomers in vitro by ion exchange chromatography. We discuss the interaction of bacterial proteins and their phage-encoded analogues to fulfil functions that are essential to phage and host growth.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DnaG interacts with a linker region that joins the N- and C-domains of DnaB and induces the formation of 3-fold symmetric rings.

Loading of the replicative ring helicase onto the origin of replication (oriC) is the final outcome of a well coordinated series of events that collectively constitute a primosomal cascade. Once the ring helicase is loaded, it recruits the primase and signals the switch to the polymerization mode. The transient nature of the helicase-primase (DnaB-DnaG) interaction in the Escherichia coli syste...

متن کامل

A functional interaction between the putative primosomal protein DnaI and the main replicative DNA helicase DnaB in Bacillus.

In Gram negative Escherichia coli there are two well-characterised primosomal assembly processes, the PriA- and DnaA-mediated cascades. The presence of PriA and DnaA proteins in Gram positive Bacillus spp. supports the assumption that both the PriA- and DnaA-mediated primosomal assembly cascades also operate in these organisms. However, the lack of sequence homology between the rest of the prim...

متن کامل

Three Escherichia coli heat shock proteins are required for P1 plasmid DNA replication: formation of an active complex between E. coli DnaJ protein and the P1 initiator protein.

DNA containing the plasmid origin of bacteriophage P1 is replicated in vitro by a protein fraction prepared from uninfected Escherichia coli supplemented with purified P1 RepA protein. It has previously been shown that the reaction required the E. coli DnaA initiator protein, the DnaB helicase, DnaC protein, RNA polymerase, and DNA gyrase. I show here that three E. coli heat shock proteins, Dna...

متن کامل

DNA Unwinding by Ring-Shaped T4 Helicase gp41 Is Hindered by Tension on the Occluded Strand

The replicative helicase for bacteriophage T4 is gp41, which is a ring-shaped hexameric motor protein that achieves unwinding of dsDNA by translocating along one strand of ssDNA while forcing the opposite strand to the outside of the ring. While much study has been dedicated to the mechanism of binding and translocation along the ssDNA strand encircled by ring-shaped helicases, relatively littl...

متن کامل

Mechanism of termination of DNA replication of Escherichia coli involves helicase-contrahelicase interaction.

Using yeast forward and reverse two-hybrid analyses, we have discovered that the replication terminator protein Tus of Escherichia coli physically interacts with DnaB helicase in vivo. We have confirmed this protein-protein interaction in vitro. We show further that replication termination involves protein-protein interaction between Tus and DnaB at a critical region of Tus protein, called the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nucleic acids research

دوره 31 14  شماره 

صفحات  -

تاریخ انتشار 2003